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Metamodeling is one of the core foundations of computer-automated multiparadigm modeling.
However, there is currently little agreement about what form the required metamodeling approach
should take and precisely what role metamodels should play. This article addresses the problem
by first describing some fundamental problems in the industry’s leading metamodeling technology,
the UML framework, and then explaining how this framework could be rearchitected to overcome
these problems. Three main issues are identified in the current framework: the dual classification
problem arising from the need to capture both the logical and physical classification of model
elements, the class/object duality problem arising from the need to capture both the classlike and
objectlike facets of some model elements, and the replication of concepts problem arising from the
need to define certain concepts multiple times. Three main proposals for rearchitecting the UML
framework to overcome these problems are then presented: the separation of logical and physical
classification dimensions, the unification of the class and object facets of model elements, and the
enhancement of the instantiation mechanism to allow definitions to transcend multiple levels. The
article concludes with a discussion of other practical issues involved in rearchitecting the UML
modeling framework in the proposed way.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-Oriented
Programming; D.2.11 [Software Engineering]; D.3.3 [Programming Languages]: Language
Constructs and Features—classes and Objects; H.1.1 [Models and Principles]: Systems and In-
formation Theory

General Terms: Languages, Standardization, Design
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1. INTRODUCTION

Computer-automated multiparadigm modeling is based on the premise of giv-
ing modelers the most appropriate modeling abstractions for their particular
problem domain, and automatically transforming the resulting models into so-
lution abstractions in the selected implementation platform. This implies the
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need for a general modeling framework that allows users to not only define
the modeling abstractions that best suit their needs but also to define their
preferred mappings of these abstractions to other implementation-specific con-
cepts. The software industry is currently trying to address this need in the new
version of the Unified Modeling Language (UML2.0) and the related Model
Driven Architecture (MDA) initiative.

If the UML is to meet this challenge it needs to progress from being a single
language to a family of languages based upon a common core set of concepts.
This will allow varying levels of features to be provided to different kinds of
users without creating a collection of unrelated specialized languages. The need
for such an extensible language framework is a central part of the request for
proposals (RFPs) for the new UML version 2.0 scheduled for standardization
in the latter part of 2003. In the RFPs, the definition of the UML is orga-
nized into two parts: the infrastructure, which describes the overall framework
within which UML modeling is performed and the superstructure which popu-
lates this framework with modeling concepts that constitute the UML modeling
language.

Although the need for an extensible modeling framework is generally rec-
ognized, there is much less consensus on what form this should take. Exist-
ing versions of the UML are based on a four-level metamodeling hierarchy, in
which each level (except the top) is presented as being an “instance of” the
level above. The basic idea is to extend the traditional object-oriented modeling
approach to multiple levels so that UML concepts can themselves be described
as instances of a UML-like model. Although the basic approach is sound and
the presented linear modeling hierarchy is superficially appealing, over time a
number of subtle problems have been uncovered that are not immediately ap-
parent. Many proposed solutions have been suggested, but unfortunately many
of these introduce different problems of their own.

In this article we trace the evolution of the UML modeling framework and ex-
plain the various interpretations of metamodeling that have been applied and
proposed. We focus in particular on the initial motivations for the strictness
doctrine, and explain why different interpretations of metamodeling at first
sight seem at odds with this principle. We then argue that the key to resolv-
ing these apparent conflicts is to recognize two fundamentally different forms
of classification. After pointing out the implications of this distinction for the
definition of variants of the UML we show how the doctrine of strict metamod-
eling indeed has a valuable role to play. We then summarize the consequences
of the resulting modeling framework and propose further simplifications based
on a unification of modeling elements and the concept of deep instantiation.
Finally, we discuss how the improved modeling framework relates to aspects of
the UML infrastructure.

2. THE EXISTING UML MODELING FRAMEWORK

Although some adjustments to the UML metamodeling framework have been
made during the UML‘s evolution, the core ideas have basically remained un-
changed from versions 1.0 to 1.4 [OMG 2001]. In this section we describe these
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Fig. 1. The four-level metamodeling architecture.

core ideas and provide some historical context behind their development and
motivation. Note that for UML versions 1.0 to 1.4 we use the term “metamod-
eling framework” to refer to the conceptual framework in which UML models
reside. However, in accordance with the UML 2.0 RFPs, we use the term in-
frastructure when referring to the UML 2.0 conceptual framework.

2.1 Linear Model Hierarchy

Although the UML’s approach to metamodeling has had several important in-
fluences [Henderson-Sellers and Bulthuis 1997], the overall architecture of the
UML modeling framework is most heavily influenced by the CDIF [1994] stan-
dard developed by a consortium of CASE tool vendors. When the initial version
of the UML was being standardized, the CDIF standard was one of the most
mature approaches to metamodeling and provided an elegant and flexible ap-
proach for supporting the interchange of data (e.g., models) between different
CASE tools. It achieved this by describing the different modeling languages
used to create specific user models in terms of a single fixed, core model (i.e.,
a meta-metamodel). Any tool that understood this core model could read the
description of a specific modeling language, and thus understand any models
written in that language. Moreover, since conceptual models are a powerful
description technique, it made sense to view both the definition of a particular
modeling language, and the language used to create this definition, as models
in their own right. The result was a linear arrangement of models of the form
depicted in Figure 1, where the meta-metamodel is the core from which the
descriptions of specific modeling languages (i.e., specific language metamod-
els) are created. Specific models are then viewed as instances of these language
metamodels, and user data, as they are known in the CDIF approach, are viewed
as an instance of a model. The total number of levels was four because this is
sufficient for the purpose of achieving CASE tool interoperability.

A simple example of how this approach is intended to work is illustrated in
Figure 2. The example (which is elaborated in subsequent sections) relates to
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Fig. 2. Extending the two levels of instantiation.

products that might be sold by a shop. An example of such a product is the
video “2001: A Space Odyssey” conceptually residing at the bottom level M0
(i.e., representing user data). Such objects are viewed as being “instances of ”1

classes in a model at the M1-level above. In the example, 2001 is modeled as
an instance of Video. Model elements at level M1, such as Video, are regarded
as instances of metamodel elements from the M2-level above, such as Class,
and these in turn are regarded as instances of meta-metamodel elements (not
shown in this diagram).

2.2 Strict Metamodeling

Although conceptually appealing, on closer inspection this simple approach ex-
hibits a number of fundamental problems (at least as originally formulated).
One of the most fundamental shortcomings is that there is no precise definition
of the “instance-of” relationship. The UML documentation simply states that
“A model is an instance of a metamodel” and “A metamodel is an instance of a
meta-metamodel.” [OMG 2001], but the precise meaning of the instance-of re-
lationship is not defined. This vagueness also made it easy to gloss over the fact
that there may be different flavors of the instance-of relationship, depending
on which model levels (M3 to M0) they connect. The existing version of the UML
modeling framework [OMG 2001] takes a very liberal and pragmatic approach
in interpreting levels and instance-of links, with the result that the model levels
are used as little more than a packaging mechanism.

An early attempt to introduce some rigor into the use and organization of
the level hierarchy was the formulation of the strict metamodeling principle
[Atkinson and Kühne 2000]. Strict metamodeling is based on the tenet that if
a model A is an instance-of another model B then every element of A must be
an instance-of some element in B. In other words, it interprets the instance-of
relationship at the granularity of individual model elements, as illustrated
schematically in Figure 3. Strict metamodeling therefore holds that levels
are formed purely by instance-of relationships, not by any other unstated

1In this article, “instance-of” relationships of all flavors are always represented as dashed arrows
(dependency links) as illustrated.
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Fig. 3. Strict metamodeling.

criteria. It also mandates that levels have strict boundaries that may not be
crossed by relationships other than instance-of relationships. Furthermore,
every instance-of relationship must cross exactly one metalevel boundary to
an immediately adjacent level. The precise definition of the concept is as follows.

Strict Metamodeling: In an n-level modeling architecture, M0, M1, . . . , Mn−1,
every element of an Mm-level model must be an instance-of exactly one element
of an Mm+1-level model, for all 0 ≤ m < n − 1, and any relationship other
than the instance-of relationship between two elements X and Y implies that
level(X ) = level(Y).

This definition deliberately rules out the top level in a hierarchy of levels, since
in practice one often wants to terminate the hierarchy of metalevels. A com-
mon approach is to model the top level so that its elements can be viewed as
instances of themselves. In terms of the model-level instance-of relationship,
this is described as a model being an instance of itself.

Although the last rule, banning relationships other than instance-of rela-
tionships from crossing metalevel boundaries, might seem like an artificial
restriction, it is of the utmost importance for maintaining the concept of a mul-
tilevel framework. Without it, the multilevel hierarchy would collapse into a
single level [Atkinson and Kühne 2001a]. For instance, relationships between
M0-level entities, called links, are normally distinguished from relationships
between M1-level entities, called associations. If a relationship (other than an
instance-of relationship) were allowed to connect an M0-level entity to an M1-
level entity should it be regarded as a link or an association? Its meaning would
be undefined within the four-level framework. Trying to define it—assuming
the above example—at level M2 would destroy the idea that a model can be
completely understood as an instance of the model one level higher up.

Since strictness appeared to provide a foundation upon which a sound meta-
modeling hierarchy could be erected, and offered a discipline for the develop-
ment of metamodels, adherence to strictness is recommended in the more recent
versions of the UML [Kobryn 2001; OMG 2001].

2.3 Stereotypes

Adding to the vagueness of the instance-of relationship was the introduc-
tion of an additional mechanism for defining metainformation: the stereotype
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Fig. 4. Application of a stereotype.
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Fig. 5. Effect of a stereotype application.

mechanism. Figure 4 illustrates the classification of Video as a taxed product
type. The intent of this example is to indicate that Video is a particular kind of
class (a taxed product type) which has a particular property associated with it
(a tax value). In other words, videos are products that are taxed at the rate of
14%. Since this value applies to all videos, the intent is to attach this value to
the class rather than to specific instances of the class such as 2001. In principle
there is no need for a new mechanism since its effect (i.e., the classification of
classes) could have been achieved by allowing users to extend the UML meta-
model. The same logical effect as that illustrated in Figure 4 can be achieved
by adding a Taxed concept to the UML metamodel as depicted in Figure 5. In
fact, Figure 5 can be interpreted as describing the meaning of this stereotype.

According to the hierarchy shown in Figure 2 the level above user classes clas-
sifies or stereotypes classes. Figure 5 also makes it evident that tagged values
(such as tax) are best understood as class slots instantiated from corresponding
metaclass attributes.

The argument against such user-accessible metamodeling in existing ver-
sions of the UML framework is that it demands a “meta” capability in CASE
tools. In other words, tools would no longer be able to assume a fixed meta-
model that could be hardcoded into the software but would need to treat this
as mutable data in their own right. Unfortunately, when the UML was orig-
inally developed only a few tools had the capability to change their behavior
based on the latest state of the metamodel, so to accommodate the majority of
tools that were not able to support metamodeling directly, “lightweight” ways
of simulating changes to the metamodel were added to the language. The re-
sulting features have become known as the “stereotype” and “tagged value”
mechanisms as illustrated in Figure 4.

Since their introduction, stereotypes have caused a lot of debate among ex-
perts as to how to correctly interpret and use them [Henderson-Sellers 2002].
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Fig. 6. A stereotype classifying instances.

A significant number of UML modelers embraced stereotypes as an alternative
way of classifying instances (rather than classes). Figure 6 shows a typical
stereotype application, in which the stereotype is used to make a statement
about the instances of a class as opposed to making a statement about the class
itself. A Description instance physically exists as an HTML page but the class
Description is certainly not an HTML page.

Not only did the introduction of an additional classification mechanism
(stereotyping) compound the existing vagueness of instantiation semantics, it
introduced further confusion about its proper role and interpretation in terms
of the metamodeling framework.

2.3.1 The Role of the MOF. In addition to CDIF, the so-called Meta Object
Facility (MOF) has also played an important role in shaping the UML model-
ing framework. Its origin was in the OMG’s Object Management Architecture
(OMA) associated with its important middleware standard, CORBA. The OMA
envisaged a set of standard objects known as Common Facilities, which would
be available in all CORBA-compliant distributed systems to provide frequently
needed services through standard interfaces. One of the envisaged Common
Facilities was the Meta Object Facility whose purpose was to provide a stan-
dard way of accessing run-time metainformation about objects within the sys-
tem. Thus the MOF was originally conceived as a distributed system service
providing access to metainformation via standardized interfaces. Technically,
the original goal of the MOF was therefore to provide a set of reflection inter-
faces.

With this background it is clear that metamodeling, as such, was not a con-
cern in the design of the original MOF concept. However, because the MOF
could be used to not only access UML models but also the UML language defi-
nition itself (i.e., the UML metamodel) there appeared to be value in integrating
the MOF concept with the CDIF-inspired metamodeling framework described
above. Unfortunately this eventually led to the MOF being understood solely
as the meta-metamodel at the M3-level and its original purpose and emphasis
on reflection facilities became lost.

3. PROBLEMS WITH THE EXISTING UML FRAMEWORK

The concepts described in the previous section still characterize the UML mod-
eling framework up to and including version 1.4. Although it has served its basic
role as the backbone for the UML, experience and research have shown that
it does not stand up well to close scrutiny. Adhering to strictness while main-
taining a linear modeling hierarchy has proved to be particularly problematic.
In this section we elaborate upon some of the main problems with the UML’s
existing modeling framework and discuss some of the solutions that have been
proposed by the research community.
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Fig. 7. Multiple classification in the current UML framework.

3.1 Multiple Classification

The core problem with the existing UML modeling framework described in the
previous section is its failure to explicitly recognize and support the existence
of two fundamental forms of classification (or instance-of flavors). Going back
to the product example of Figure 2, the M2 level really aims to address two
concerns. Figure 7 shows how Video and 2001 are to be understood in terms
of the UML metamodel in the OMG four-level metamodeling framework. Al-
though regular user types (classes) at the M1-level, such as Video, are viewed
as instances of Class according to the instance-of notion explained in the pre-
vious section, user instances at the M0-level are viewed as instances of two
concepts: the instance 2001 is classified twice, first by the M1-level (domain)
type Video, and second by the M2-level metatype Object. The rationale for this,
which becomes most evident in the context of CASE tool representations, is
that one would like to know that Video is the domain type for 2001 but it is also
crucial to know that 2001 is an object (i.e., can have slots and links and is as-
sociated with a certain notation). If 2001 were a component instance, a CASE
tool would need to render it differently and allow a different set of operations
on it.

Thus, in general, it is necessary for model elements to have both a logical
domain classifier (e.g., Video), defining its content and a physical classifier (e.g.,
Object) defining its structure and presentation. The existence of these two dif-
ferent forms of instance-of relationships has been pointed out by a number of
researchers. Bézivin and Gerbé [2001] use the term metainstance for physical
classification and instance-of for logical instance-of relationships and Geisler
et al. [1998] use the terms interlevel instantiation and intralevel instantiation,
respectively. In this article we use the terms logical and physical classification
to distinguish the two forms.

Since the current UML framework equivocates on the true role and nature of
classification, a number of peculiarities can be observed. Despite the fact that
the latest version of the UML subscribes to the doctrine of strict metamodeling,
in Figure 7 one can observe some obvious violations of strictness.
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Fig. 8. Object as a prototypical concept.

(1) Object 2001 has more than one classifier (Video and Object).
(2) One instance-of relationship crosses more than one metalevel boundary.

Clearly, the desire to make statements about 2001 with regard to both its
logical type (Video) and its physical structure classifier (Object) is in conflict
with the idea of strictness while trying to conform to a linear metamodeling
framework. The following two sections explain attempts to rectify this situation.

3.2 Prototypical Concepts

One way of tackling the need to achieve the required dual classification of model
elements in a way that is consistent with the strictness doctrine is to exploit
subtyping. Using subtyping one can exploit the fact that an instance of a class is
also, indirectly, an instance of all superclasses of the class. Figure 8 illustrates
how the dual classification of 2001 as both a Video and an Object can be achieved
by making Object the supertype of Video. Note that in this scenario, the Object
concept is now defined at the M1-level (where, according to strictness, types of
M0-elements belong), and hence (indirectly) classifies all M0-level instances as
objects by virtue of being at the top of the inheritance hierarchy of all M1-level
types. The instance 2001 is thus a direct instance of Video (as before) and an
indirect instance of Object (via inheritance).

The definition of “prototypical” concepts at the top of inheritance hierarchies
has a long tradition in the design of class libraries accompanying popular object-
oriented languages such as Java and Smalltalk. Such libraries have a class
(typically called Object) at the top of the class inheritance hierarchy whose
properties are inherited by all classes, and thus affect all objects instantiated
from them.

Another way of looking at this design is to regard Class as the powertype of
Object [Odell 1994] meaning that every instance of Class must be a subclass of
Object. This ensures that all instances of classes (i.e., objects) are guaranteed
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Fig. 9. UML metamodel as a language layer.

to be indirect instances of Object and thus share some standard attributes or
methods. We come back to the desire to make such guarantees across two levels
of instantiation (from M2 to M0 in this example) later in the article.

Although the prototypical concept approach achieves the desired dual classi-
fication of instances, such as 2001, it does so only with respect to logical classifi-
cation. Essentially Object as used in Figure 8 may prescribe content for objects
(i.e., enforce the existence of certain slots or methods such as deepCopy), but
it does not really fulfill the need for defining the physical structure of objects.
The fact that an object has slots and links still has to be defined elsewhere.

3.3 Metamodels as Language Definitions

The prototypical object approach mentioned above tried to fix the problem of
dual classification by integrating the physical classifier (Object) into the logical
inheritance hierarchy. It therefore essentially regards the logical classification
dimension as being the primary one, and ignores the role of physical classifi-
cation. The reverse approach is to deemphasize the logical metamodeling facet
and emphasize the physical classification dimension. The role of the M2-level is
then understood solely from the perspective of language definition [Evans and
Kent 1999].

The main consequence of this approach, as illustrated in Figure 9, is that
logical instance-of relationships no longer play a role in determining the level
structure. Although 2001 is logically an instance of Video in Figure 9, from
the perspective of the metamodel both elements are viewed as just instances
of language elements, on an equal footing from a metamodeling perspective.
In such approaches the concept of strictness is deliberately ignored, since it is
impossible to reconcile it with the notion of explicit intralevel instantiations as
occurring in Figure 9 between 2001 and Video.

An advantage of this “UML as a language”2 approach is that it offers a path
to a rigorous and proven strategy for defining the semantics of model elements
[Evans and Kent 1999]. If the UML metamodel is solely regarded as a lan-
guage definition layer, established ways of assigning semantics to program-
ming languages can be directly applied to the UML, enabling the exploitation

2M2 is seen as a language definition level for both M1 and M0 levels.
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of a large body of knowledge and techniques in computer science [Harel and
Rumpe 2000].

This approach also has some disadvantages, however. The first and most
significant is that it provides no explicit or natural approach for meeting the
needs of logical metamodeling. Apart from stereotypes and tagged values—
which should really be interpreted as just a shorthand syntax for logical
metamodeling—there is no way to classify types (i.e., to define types of types).
Any stereotype, (e.g., <<Taxed>>) intended to achieve a logical classification
of classes has to be explained as a subclass of a physical classifier making it
a means of physical rather than logical classification. Emphasizing physical
classification at the expense of logical classification is therefore not a truly sat-
isfactory solution either.

3.3.1 Nonlinear Frameworks. A way of side-stepping this dual classifica-
tion dilemma is to choose the classification flavor based on the context in which
classification information is needed. The approach by Álvarez et al. [2001] aban-
dons the idea of a linear framework and organizes the levels in a nested way
(see Figure 10). The instance 2001 is then understood to have the type Video
when looked at from the perspective of a domain modeler. However, from the
perspective of a tool, 2001 is said to have type Object and the instance-of re-
lationship to Video is then merely a link between two model elements. A “G”
mapping is defined that can translate one of the above views into the other
[Álvarez et al. 2001].

The price to pay for escaping the dilemma in this manner is that the answer to
the question, “What is the type of 2001?” has now become context-dependent.
The idea of a single correct answer, which transcends the perspective of the
enquirer, therefore has to be abandoned. Also, whenever one needs to have a
complete picture about the nature of 2001 one still needs to consult two places,
Video and Object.

Another problem is that although the nested approach at least grants a level
boundary between M0 and M1 (only from a perspective that excludes levels M2
and higher, though) it does not really contribute to the understanding of dis-
tinct instance-of relationships. The construction of the nested hierarchy and
the associated application of the “G” mapping are explained as a recursive pro-
cess, which implies that the same metalevel generation principles are applied

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



Rearchitecting the UML Infrastructure • 301

M2M1

M0

Video Class

2001 Object

in
st

an
ce

O
f

ClassClassObject
instanceOf

Object

in
st

an
ce

O
f

instanceOf

M3

Fig. 11. Replication of concepts.

throughout. This, however, implies that the logical instantiation between 2001
and Video is viewed as being the same mechanism as the physical instantiation
between 2001 and Object, clearly blurring the differences between logical and
physical classification.

A problem, that has not been addressed by the work of Álvarez et al. is the
“replication of concepts” problem [Atkinson and Kühne 2001b] (see Figure 11).
Since a two-level “definition and use” approach is applied multiple times—
once for each nesting level—concepts like Object, Class, and the instance-of
relationship have to be defined time and again for each level above M1.

In summary, the nested approach deliberately abandons the ideas of strict-
ness and a linear framework in favor of a “more powerful” organization strategy.
However, it creates new problems of its own such as not explicitly distinguish-
ing between fundamentally different classification dimensions, making the
“type-of” question context-dependent, and having to replicate the definition of
concepts.

4. REARCHITECTING THE UML INFRASTRUCTURE

In the previous sections we provided a historical perspective of the motivations
and influences that have helped shape the current UML modeling framework,
and identified some of the major problems (i.e., dual classification, class/object
duality, and replication of concepts) that have become evident, particularly in
relation to the notation of strictness. We also discussed some of the research
proposals for overcoming them. In the remainder of this article we draw upon
these insights to propose an overhaul of the UML modeling framework that
addresses the identified problems while remaining faithful to the spirit and
intent of the original framework.

We describe three fundamental concepts leading to a rearchitected, coherent
UML modeling framework. Although essentially independent, these build on
each other to provide a significant enhancement to the existing metamodeling
approach. The following section then addresses some of the ramifications of
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Fig. 12. Physical dimension.

these proposals on the coherence, effectiveness, and usability of the infrastruc-
ture as a whole.

4.1 Two Fundamental Metadimensions

As explained in the previous section, the underlying cause for most of the prob-
lems with the current UML metamodeling framework, especially with the ap-
plication of strictness, is the failure to properly recognize and accommodate two
fundamentally distinct forms of classification: logical classification and physi-
cal classification. The current UML metamodel does not explicitly distinguish
between these two forms of classification and, consequently, there is no no-
tion of how the overall shape of the modeling framework and location of model
elements could be driven by these distinctions.

An important first step towards a coherent modeling framework is therefore
to explicitly identify instance-of relationships as being either physical or log-
ical. The importance of doing so has been emphasized by several researchers
[Bézivin and Gerbé 2001; Geisler et al. 1998], albeit using different terminology.
However, this alone does not go far enough. It is also necessary to understand
what role these two forms of classification play in shaping the overall frame-
work. In turns out that by distinguishing logical and physical classification,
and mapping out distinct metadimensions for them, one can achieve a clean
separation of concerns in terms of describing model elements.

4.1.1 Physical Dimension. The dominant classification dimension from the
viewpoint of tool builders is the physical dimension. This essentially adopts the
“UML as language” philosophy outlined above, and views the UML metamodel
(M2) as defining the physical classifiers (abstract syntax) from which models
are constructed. Any logical instantiation that may take place within a model
(e.g., between a class and an object) is essentially ignored from this perspective,
and the levels are defined purely from the point of view of physical instantia-
tion. A schematic representation of this dimension is illustrated in Figure 12.
Not surprisingly it is basically the same as Figure 9 since this also illustrates
the “UML as language” metaphor. However, to emphasize that we are now in-
terpreting this as representing just physical classification, in Figure 12 we use
the labels P1 and P0 to identify the levels.

In this dimension, the P1 level defines (language) concepts from which user
models are created. Defining 2001 as a (physical) instance-of Object defines it
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as being a model element that can have slots and links, and defining Video as
being a (physical) instance-of Class defines it as being a model element that can
have attributes and associations. These two instance-of relationships, however,
have nothing at all to say about the logical relationship between Video and
2001 and the fact that one (Video) is thought of as being a logical classifier of
the other (2001). In Figure 12 level P1 contains an association between Class
and Object, which expresses the fact that objects (such as 2001) may be linked
(by an instance-of dependency) to their logical domain type (Video). From the
viewpoint of the physical dimension this does not constitute a level boundary,
though. Creating level boundaries between logical types and instances is the
role of the logical dimension.

4.1.2 Logical Dimension. The dominant classification dimension from the
viewpoint of modelers (i.e., users of the UML) is the logical dimension. It focuses
on classification within a domain, and is not concerned with the representation
of concepts (i.e., with physical classification). This is illustrated in Figure 13,
which shows three levels of logical instantiation. The concept 2001 is a logical
instance-of the concept Video, which in turn is a logical instance-of the concept
ProductType. To emphasize the fact that Figure 13 describes only logical classifi-
cation we have labeled the levels L2, L1, and L0. In contrast to Figure 2, we have
changed the type of Video from Class to ProductType to illustrate that this di-
mension deals with logical classification only. The fact that Video is an instance
of Class is a statement concerning its representation (its physical structure; see
Figure 12), which is irrelevant in this logical dimension. Integrating the logical
dimension with the physical dimension so that we fully know what Video is, is
addressed in the following section.

The reason for including a third level L2 in Figure 13 is not just to demon-
strate the difference between a logical classifier (ProductType) and a physical
classifier (Class). There are numerous reasons why such a logical metalevel
above classes would be beneficial in the modeling and even realization of sys-
tems. Odell [1994] demonstrates the usefulness of associating information with
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Fig. 14. Two-dimensional classification framework.

types so that they can be viewed as being instances themselves. Mili and Pachet
[1998] also give a number of examples, including one showing how to express
commonalities among models, which cannot be well captured with general-
ization. The Type Object pattern essentially describes how to emulate three
metalevels with two (i.e., how to gain the flexibility of first-class types by only
using classes and objects [Johnson and Woolf 1998]). Just as the application of
the Visitor pattern [Gamma et al. 1994] can be regarded as a symptom of the
lack of multidispatching in the language used, the application of Type Object
is a symptom of the lack of logical metaclasses.

There is no a priori reason why only three levels should be used for logical
classification. The principles discussed here scale up intuitively to multiple
logical levels.

4.1.3 Two-Dimensional Modeling Framework. The key to integrating log-
ical classification with physical classification is to view them as orthogonal di-
mensions. Both views are equally valid and important, and as illustrated in
Figures 14(a) and (b) can be integrated into a single coherent modeling
framework by associating them with the horizontal and vertical dimensions,
respectively.

Figures 14(a) and (b) represent exactly the same framework, but with a dif-
ferent emphasis. Figure 14(a) on the left-hand side organizes the physical levels
vertically and the logical levels horizontally, whereas Figure 14(b) organizes the
physical levels horizontally and logical levels vertically. The difference is just
one of viewpoint, corresponding to the different perspectives of tool builders
and modelers as outlined above. Note that the flavor of the instance-of rela-
tionships is explicitly distinguished and that different identifiers (P and L) are
used to indicate the roles of the levels (physical and logical, respectively). The
collection of levels L2 to L0 constitutes level P0. A similar approach, with one
level containing physical classifiers “meta” to all elements in another hierarchy,
is employed by Riehle et al. [2001]. However, distinguishing between physical
and logical classification within the metamodeling hierarchy is not considered
in their work.
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Figure 14 illustrates another advantage for including a logical L2 level,
namely, its role as an ideal host for user stereotypes. In the depicted frame-
work, stereotypes such as Taxed or ProductType are simply (meta-) classes at
the L2 level. Clearly the intent of these stereotypes is to partition user classes
into those that are, for example, ProductTypes and those which are not. The
classes themselves (such as Video) are still ordinary classes as opposed to new
language elements. Therefore, the traditional way of explaining the effect of
stereotype application as an extension of the M2 (language) level with corre-
sponding (sub-) metaclasses, really mixed up language extension (extending
the set of physical classifiers) with domain type classification (extending the
set of domain metatypes). The framework depicted in Figure 14 nicely sepa-
rates these two concerns.

Apart from explicitly distinguishing orthogonal dimensions of classification,
the main advantage of this conceptualization of the UML modeling framework
is that strictness is restored as a natural and valuable discipline for metamodel-
ing. Once the two dimensions are separated, the doctrine of strictness applies to
each of them individually in a natural way. When each dimension is regarded
separately, it is true to say that the instance-of relationship forms the basis
for defining the level hierarchy, and thus determines the location of elements
within the levels.

4.1.4 Two or More Dimensions?. Some may argue that two dimensions of
classification are not sufficient. After all, an amphibious vehicle may be classi-
fied as a Car, a Boat, a UML object, an XMI fragment, a Java object, or an HTML
page. On the surface it appears that a multitude of classification dimensions
is necessary to capture all the various ways in which the amphibious vehicle
instance may be classified. However, note that Car and Boat are both classifiers
in the logical domain and multiple inheritance could, for example, be used to
express that these different views exist on one and the same instance. In con-
trast, all the other classifiers refer to how to represent the vehicle (i.e., they are
physical classifiers). In fact, they do not even classify the same instance, but
each has its own vehicle representation which is related to the other instances
by “correspondsTo” or “representationOf” links.

It becomes clear how fundamental the logical and physical dimensions are
when one considers that to fully characterize a modeling element one always
needs to say what notation was used to draw3 it and what its domain classifier
is. The latter will typically be shown using the same notation but usually by a
different abstract syntax element.

4.2 Unified Modeling Elements

Explicitly distinguishing metadimensions as described in the previous section
represents a big step towards a clean and coherent UML infrastructure. How-
ever, there is still room for improvement from the perspectives of both tool
builders and modelers. The next stage is concerned with simplifying the P1

3More precisely, what ontology was used to represent it (e.g., what its abstract syntax clas-
sifier is).

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



306 • C. Atkinson and T. Kühne

anAttributeInstance  = Value

aClabject : aMetaClabject
+ =

UML Instance ViewUML Type View

anAttributeType

aClabject

Type (Class) view Instance (Object) view

Fig. 15. Unification of class and object facets.

level to reduce complexity for tool builders while at the same time obtaining
increased expressiveness for modelers.

In Figure 14, Video’s physical classifier is Class. However, from the point of
view of ProductType, Video is more appropriately classified as an instance; for
example, it may have a tax slot4 holding the percentage value to be used for the
taxation of videos. From this viewpoint, therefore, Video should have Object as
its physical classifier. Obviously, Video has both an instance facet (e.g., the tax
slot) and a type facet (e.g., a price attribute).

Figure 155 depicts how Video—the cube at the right-hand side of the
equation—can be regarded as the composition of a class and an object. This
type/instance duality occurs for all model elements in an instantiation hierar-
chy except for those at the bottom level, which have an instance facet only.

It is possible to handle this duality by arranging for Class to inherit from
Object (in the context of Figure 14, level P1), MetaClass to inherit from Class,
and so on if there are more levels.6 This would enable both Object and Class
views on Video; and Object, Class, and MetaClass views on ProductType, and so
on.

However, this approach is not satisfactory for the following reasons.

(1) It introduces a superficial difference between instances of model elements
at different levels and thus requires a multitude of physical classifiers.

(2) It means that the number of metalevels is dictated by the available physical
classifiers and not by the needs of the modeler.

In order to see why modelers may need even more logical metalevels than
we have already dealt with, suppose that 2001 itself were a only description
of the movie and thus could also be regarded as a classifier of actual video
copies (i.e., by representing a template for their properties). This would add an
additional logical layer at the bottom of the logical levels in Figure 16, which
would contain the actual copies of 2001. Although there are other ways to model
the relationship between a template of a video (2001) and its copies, this is
certainly a valid one as both the description of 2001 and the classifier for copies

4A tagged value in UML-speak, but essentially a class slot.
5Clabject = CLAss+ oBJECT.
6An approach essentially followed by the Smalltalk class library.
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may be regarded as two views on one modeling element. This is supported by
the fact that both may be identified using the same ASIN.7 Assuming just these
four levels, we already need to add another physical classifier to P1, an approach
that obviously lacks elegance and arbitrarily limits the number of levels.

The variety of physical classifiers at P1 is unnecessary if the instance/type
duality for model elements is accepted and the bottom and top levels are treated
as special cases. The essential idea is that the distinction between object, class,
and metaClass is no longer needed if one StructuralElement classifier is pro-
vided. Slots, attributes, and metaattributes are then likewise unified into the
notion of a field, which may contain values, types, or metatypes (model ele-
ments in general). With the exception of the bottommost level (Object), the
above-mentioned views are identical anyway. Although it is true that it is not
reasonable to expect a good answer to the message (e.g., numberOfInstances or
setOf Subclasses from an object), this, however, cannot be expected from an ab-
stract class (has no instances) or a final class (has no subclasses) either. Given
the advantages the unification has to offer, it seems justifiable to let objects
return empty sets in such cases.

The effect of treating elements as inherently having an instance and a
type facet on the two-dimensional framework described above is illustrated in
Figure 16.

Associating model elements with their correct levels was trivial with the
“one physical classifier per L level” approach since objects always reside at
the L0 level, classes always at the L1 level, and so on. To do this in the unified
version one simply equips StructuralElement with a level attribute so that model
elements in the L levels have values 0, 1, and so on, corresponding to the level
at which they reside. The value of this level slot would also be used to choose an
appropriate rendering of the model element and to enable certain operations
in a tool, and the like.

7Amazon Standard Identification Number.
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4.2.1 Redundant Physical Classification. The previous section proposed
to unify Class and Object into StructuralElement and do the same for other
type/instance classifier pairs in the UML metamodel, for example, Component
and ComponentInstance. By doing this we removed the differences between a
type and its instance but maintained the distinction between several modeling
element types with both an instance and a type facet. The superstructure within
P1 would still distinguish among structural elements, behavioral elements, de-
ployment elements, and so on. The unification idea can be taken further, how-
ever, by unifying all these domains as well. All that is essentially needed in
this case is a ModelElement concept. With such a shrunken-down version of the
superstructure in place, this advanced unification would—next to simplifying
the P1 level and enabling an unbounded number of logical metalevels—have
another very important effect. Since all logical model elements are now in-
stances of the same physical classifier (ModelElement), the physical instance-of
relationships have become essentially redundant. For a modeling tool it is no
longer necessary to maintain the link to a physical classifier (such as Object or
ComponentInstance), because every logical model element is, by definition, an
instance of the physical classifier ModelElement. Obviously, another way then
has to be found to distinguish an object from a component instance. Section 5.1
explains how this can be achieved in a way that makes the UML superstructure
adaptable for modelers in a natural fashion.

4.3 Deep Instantiation

The unification described above elevates model elements to proper citizens in
a multilevel metamodeling hierarchy but the instantiation mechanism has not
yet been upgraded accordingly. Traditional instantiation is sufficient when deal-
ing with only two levels (e.g., classes and objects) but should ideally be enhanced
for a multilevel instantiation hierarchy. The problem with traditional instanti-
ation is that a type may only specify properties of its direct instances but has
no bearing on, for example, the instances of its instances. This is why we refer
to it as shallow instantiation.

An example of when it is necessary to make statements about instances
across two levels is to require that all products (i.e., instances of some product
type such as Video or DVD) have a price slot. The natural place for making this
statement is at ProductType, since every instance of ProductType is required
to have a price attribute. Establishing this is possible either by associating a
constraint with ProductType, which requires ProductType instances to have a
price attribute, or by using the powertype concept (see Figure 17). The purpose of
specifying ProductType as the powertype of Product is to enforce the requirement
that every instance of ProductType (e.g., Video) inherits from Product and thus
acquires a price attribute by inheritance. The supertype Product is, hence, used
to specify what is expected from all instances of ProductType instances. In this
example, one ensures that any product, such as 2001, will have a price slot no
matter what product type (e.g., Video, DVD, CD) it is.

We argue that neither constraints nor the powertype concept appropri-
ately addresses the need to specify properties across more than one level of
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instantiation. The next section elaborates on how to achieve this more naturally
by enhancing instantiation to be “deep” rather than “shallow” and motivates
why the scope of a property can sometimes even extend over more than two
levels.

4.3.1 Potency. Deep instantiation is a conservative extension of the tra-
ditional two-level, shallow instantiation mechanism. It subsumes shallow in-
stantiation but enhances it to allow information to be carried over more than
one instantiation step. The key idea is to assign a potency value to model el-
ements and their fields, indicating how many times they can be instantiated.
Instantiating a model element therefore amounts to reducing its level by one
and also reducing its potency and the potencies of all its fields by one. Tradi-
tional classes, attributes, and associations have potencies of 1 since they can be
instantiated exactly once, and traditional objects, slots, and links have potency
0 since they cannot be instantiated anymore. Instantiating a potency 1 element
such as Video creates a potency 0 element, as required. Figure 18 illustrates
how the intention of the modeling scenario of Figure 17 can be expressed with
deep instantiation.

There is no need for a Product concept anymore, since the price attribute
in Video is enforced as an instance of the potency 2 price (meta-)attribute in
ProductType. Instantiating ProductType to Video turns its potency 2 price field
into a potency 1 field, which corresponds to a regular attribute as desired.
Although types traditionally may only describe the instance facet of elements,
potency values higher than one, therefore, can be used to also describe the type
facet (and metatype facet, etc.) of instances.

Note how well the potency concept matches the conceptually unbounded
number of logical metalevels we obtained from unifying the physical classi-
fiers. With the appropriate potency value a property can be enforced across any
number of instantiation steps. For instance, if we again assume that 2001 is a
classifier for actual copies of 2001 rather than a bottom-level instance, we can
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model price as a potency 3 field in ProductType so that only copies are associ-
ated with prices. In contrast, copy classifiers (e.g., 2001) only specify that copies
have a price, which may vary depending on the place of manufacture of the
copy.

When a modeler only uses two levels (classes and objects) deep instant-
iation—using appropriate notation conventions—looks and feels exactly like
traditional shallow instantiation. Only if a modeler chooses to use levels above
L1, do the concept and associated notation for deep instantiation come into
play, providing enhanced expressiveness. This added expressiveness exactly
matches the increased modeling potential enabled through additional logical
metalevels.

Together the level and potency properties of modeling elements allow very
concise and precise definitions of the properties of model elements with respect
to instantiation, and are capable of obviating the use of constraints, power-
types, and prototypical metaclasses on many occasions [Atkinson and Kühne
2001b].

5. TOWARDS A COMPLETE UML INFRASTRUCTURE

In the previous section we described three complementary enhancements to
the current UML modeling framework which would place it on a sound footing
and enhance the capabilities available to modelers. To avoid overcomplicating
the description of these ideas, we presented them in as concise and focused
way as possible. However, if the rearchitected framework is to serve as the
infrastructure8 for forthcoming versions of the UML some important issues
remain to be addressed. Some ideas for addressing these issues are discussed
in this final section.

8Conforming to the UML 2.0 RFP we use the term infrastructure to refer to the combination of
metamodeling hierarchy and other related aspects, such as semantics.
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5.1 Language Elements versus Library Elements

One of the major objectives for the new UML infrastructure is to enhance the
extensibility of the UML, so that it is more tailorable to user-specific domains
and the vision of a family of languages can be fully realized. Since the UML
is essentially an object-oriented language, it is valuable to draw parallels to
the way in which the issue of customization is addressed in object-oriented
programming languages.

Among the key concepts that distinguish object-oriented languages from pre-
vious languages is that regular users can add their own types (with associated
behavior) to the predefined set of types available for creating new programs.
In the days of FORTRAN, properly integrating the concept of a point type with
polar coordinate representation would have required a language extension. To-
day’s object-oriented languages allow the definition of classes that become part
of a library for use in the creation of future programs and therefore are much
more tailorable to suit the needs of a user in a certain specific domain. The
concepts available to users of an object-oriented programming language are
therefore defined in two basic ways:

—core language concepts, and
—library classes.

Moreover, in well-designed languages the syntax is usually set up so that
it is impossible to tell (from the syntax alone) whether a core language type
or a (user-defined) library class is being used. Thus a strategic issue for the
design of an object-oriented language is what concepts to define within the
language core and what concepts to define in the predefined library of classes.
The strategy adopted by most object-oriented languages is to make the core
language definition as small as possible and to define as many concepts as
possible within the class libraries. This helps to

—keep the language definition small and simple,
—keep the virtual machines stable even in the event of considerable (library)

concept restructurings, and
—give users maximum tailorability.

Users may change or extend a library but cannot change the core language
concepts (e.g., object identity, instantiation, message sending, etc.).

The distinction between language elements and library elements has never
been adequately addressed in the previous definitions of the UML, partly
because of the lack of clarity about the distinct forms of classification. With
logical and physical classification separated into distinct separate dimensions
the choice becomes much clearer. Core language concepts appear within the
top physical level (P1 in Figure 14) whereas concepts defined as part of the
predefined library (i.e., modeling standard) appear in the top logical level
(L2 in Figure 14). Thus, following the lesson of object-oriented programming
languages, minimizing the core language definition would correspond to min-
imizing the size of P1 and placing as many concepts as possible in Lt, where Lt
is the top logical level. In other words, the lesson learned from object-oriented
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languages implies that physical classification should be minimized and as many
concepts as possible should be placed within the logical classification hierarchy.
A consequence of this approach is—when used in combination with a poten-
tially unbounded number of logical levels—that the logical hierarchy would
grow downwards, that is, growing new bottom levels instead of growing new
top levels which should be accounted for by an appropriate numbering scheme.

The library idea is applicable to many concepts in the current UML meta-
model which might at first appear to be natural parts of the language definition.
In fact, most of the UML’s superstructure could be moved to the logical level in
order to achieve the separation of concerns exemplified by object-oriented lan-
guages and their libraries. In order to achieve the same benefits of tailorability,
the only concepts or mechanisms that the UML core needs to address are those
related to

1. type/instance instantiation,
2. specialization,
3. graph-based models,
4. presentation (concrete syntax), and
5. reflection.

The first two items basically contribute the essence of object-orientation. The
next two allow the arrangement of concepts in the form of graphs with a graph-
ical notation (the hallmark of the UML). The last item provides standardized
access to model information (see Section 5.3).

An approach where each level has to reestablish the above core concepts
in addition to the logical concepts (i.e., using physical classification only for
building levels) directly leads to the “replication of concepts” problem noted
before. Such an approach actually made sense if the fundamental underlying
paradigm can change from level to level and is thus needed in the most general
case. However, when object-oriented modeling is accepted as a general theme
across all levels then it is better to capture its core features once (at level P1)
and therefore be released from re-creating object-oriented modeling facilities
for each (physical) level time and again.

An interesting property of this approach is that most of the current UML
superstructure would not reside at a language definition level (i.e., M2) any-
more, but be provided as a modeling library at the top logical level, Lt. As
such it would be extendable by users and enable tailorability without involving
language extensions and the associated consequences of dealing with language
standardization, language semantics, tools relying on language invariants, and
the like. The “Unified Modeling Library” (UML) would be the core profile to
be extended by all custom profiles, and by being based on logical classification
such extensions would not have to mix a language extension metaphor with a
library extension metaphor as is currently the case.

5.2 Semantics

One of the most important issues to be addressed (which has actually driven
much of the research work in this area) is the provision of precise and
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unambiguous semantics for UML models. At present, the semantics of the UML
are primarily described in natural language, but this approach has well-known
limitations [Harel and Rumpe 2000]. If the UML is to receive adequate and
consistent tool support, the definition of semantics has to be placed on a more
formal footing.

The important point to bear in mind, when addressing this question, is that
different approaches can be used for the core and the library parts, as discussed
above. For the core language semantics in P1, the most natural approach is to
exploit the tried and tested techniques used for programming languages, and
define the semantics of language concepts in terms of a mapping to a seman-
tic domain [Evans and Kent 1999; Harel and Rumpe 2000]. However, for the
library elements defined in the logical levels a different approach can be used.
It is likely that OCL statements will play an important role in defining the
well-formedness rules related to the use of specific model elements (based on
their meaning) but the actual definition of their meaning could apply some
domain-specific formal approach, or in the worst case could still use natural
language.

5.2.1 Notation. Defining the presentation of model elements (i.e., their vi-
sual appearance) is not considered to be as problematic as finding a proper
semantics, although the complications of a visual notation in comparison to a
textual one are recognized. One formal approach is to regard the model ele-
ments as abstract syntax and their notation as the associated concrete syntax
[Evans and Kent 1999].

It has to be noted, though, that concrete syntax in the UML has to be flexible
in several ways. One of the capabilities of the UML is to allow different users to
use different concrete syntax (i.e., icons) for the same basic concept. Among the
intentions of introducing the stereotype mechanism, for example, was allowing
users to associate new icons with modeling concepts. Also, different views, such
as, an analysis view versus a design view, may use differing levels of refinement
with regard to the visual presentation of the underlying model. Finally, users
must be able to define new concrete syntax for any new specialized concepts
that they introduce.
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This highlights the fact that the UML needs a dynamic concrete syntax.
Dynamic syntax means that the way in which a model element is rendered
(i.e., presented), depends on more than just its physical type and that a CASE
tool should consider additional data items (e.g., the state of the element, the
current view on it, etc.). In the current version of the UML, such capabilities
are partially addressed with the notion of presentation elements. In short, the
issue of concrete syntax in the UML should be understood as being dynamic in
nature and being related to the model elements used to capture presentation.

Note how the unification of physical classifiers (see Section 4.2) made the
presentation of elements dependent on the state (i.e., the level value) of a model
element rather than the type. From the perspective of the physical P1 level, the
logical classifier (e.g., a metaclass representing a stereotype with an associated
notation) is just another piece of information—encoded into the state of the
model element—as to how to render the model element.

The issue of syntax also has a relationship to the possible role of stereotypes
in the new UML infrastructure. With an improved understanding of the role of
logical metamodeling, such as that offered in the previous section, stereotypes
can best be understood as a shorthand way of applying logical metamodeling
combined with control over dynamic presentation. Hence the required notion
of presentation elements could actually fulfill a much larger role than just
generating a visual notation. They could be used to generate other forms of
representation, as outlined in the following section.

5.3 The Role of the MOF

Although the term MOF has its origins in the OMG’s Object Management Ar-
chitecture as a repository for dynamically accessible metainformation and for
supporting model interchange in the first four versions of the UML, it quickly
became associated with (i.e., treated as being the same as) the meta-metamodel
at level M3. Unfortunately, these two interpretations are not compatible in the
original linear metamodeling framework. If the MOF is identified with the M3
meta-metamodel then it can neither act as a reflection interface nor provide
model interchange support for all the levels below (M2 to M0), unless one aban-
dons the concept of a strictly linear modeling framework.

The most natural interpretation of the name MOF, from a purely termi-
nological perspective, would be to return to the original intent of supporting
reflection and model interchange. These responsibilities correspond to items 5
and even 4 in the list of capabilities to be provided by the core (P1) language.
In the original one-dimensional, linear modeling framework, this would have
required the MOF to manifest itself at every level (except the bottommost),
since it needs to provide interfaces (an API for tools to gain metainformation)
to elements at all levels.

As illustrated in Figure 20, this is not necessary in the two-dimensional
framework. Here, the MOF is simply regarded as representing a common
and standardized interface to the physical structure of model elements, which
is exactly the view required by tools. This design makes sense, especially
if one adopts the “UML as a library” approach since then even the UML’s
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superstructure is accessible through the MOF interfaces. In this design one
may even go so far as to refer to the whole of P1 as the MOF, thereby assign-
ing the responsibilities of a meta-metamodel, reflection interface, and model
interchange support to the MOF again.

An alternative design, which is more appropriate if one wants to retain the
concept of a physical UML language level is to regard the MOF as something
external to the UML metamodeling framework, which can see the latter as
one entity (i.e., disregard level boundaries). In the terminology of Atkinson and
Kühne [2001a] one would regard both the UML metamodeling framework and
the MOF as “modeling spaces,” which are not forced to fit into a single-level
hierarchy but can have their individual hierarchies allowing intermodel space
relationships that do not have to respect level boundaries. See Figure 21.

In the previous section we hinted at a relationship between the concept of
concrete syntax and the MOF’s role to support model data interchange. The
key to recognizing this connection is to generalize the requirement to support
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Fig. 22. Modeling and the real world.

multiple visual presentations of model elements to the support of multiple rep-
resentations of model elements. An XMI representation of a model element
(meant for interchange) is a rendering of the underlying model element, just
like the visual representation of it on a drawing canvas. Ergo, the facilities
dealing with model element presentation (discussed in connection with con-
crete syntax above) could be viewed as a part of the general MOF-related need
to support multiple representation of model elements.

5.4 The Location of Real World Objects

Another important point to be addressed is the question of how the two-
dimensional modeling framework relates to the real world. The question arises
since especially in data modeling contexts, it is plausible to think of the actual
physical data (e.g., a record in a database or an XMI fragment) as being an
instance of a modeling element type (such as Video). In more analysis-oriented
applications of the UML, even real people, for example, a human being called
“mike” could be regarded as being instances of a type Person or a role Actor.

The question, therefore, arises as to what the relationship of L0 in the two-
dimensional framework to the above interpretation of M0 is. Not surprisingly,
L0 contains instances that are logical instances of user types at the L1 level.
Consequently, L0 hosts instance models whose elements represent things in the
real world (see Figure 22). We present Figure 22 with physical classification
aligned to the vertical dimension in order to show the one-to-one correspondence
of levels P1, P0, and W (real world) to the original M2, M1, and M0 levels.9

On the top we have a language definition level, which may or may not use
the unification of physical classifiers as presented earlier. Below we have a
modeling level (P0) containing all modeling artifacts whether they relate to
instance models (L0), conceptual models (L1), or domain metamodels (L2). As

9From a modeler’s perspective Figure 22 should be turned 90 degrees to the right.
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was the case with the M1 level, we can think of the instance-of relationship
between 2001 and Video as an intralevel instantiation. The two-dimensional
framework places both instance-of flavors (logical and physical) on an equal
footing, though, and thus designates logical level boundaries within P0(M1).
Moreover, the two-dimensional framework separates the responsibilities of the
original M2 level into the P1 (language definition) and L2 (user-defined domain
metatypes, e.g., stereotypes) levels, respectively. Finally, at the bottom level we
have real-world things, which first and foremost are in a “represented-by” rela-
tionship with modeling elements. The 2001 instance stands for (i.e., represents)
a thing in the real world. As an element of an instance model it could be used
in simulations when the modeler is trying to validate some assumptions about
actual configurations. It could also directly be used as a prototypical specifi-
cation for real world things, in order to see whether, for example, some actual
tape conforms to the information contained in the 2001 instance.

Such conformance checking, however, is usually not accomplished with pro-
totypical instances from instance models, but by using a type (e.g., Video) from
the conceptual model (at L1). This is depicted by the “modelClassifier” rela-
tionship between the real tape and the conceptual model element Video. In the
original one-dimensional framework one would expect the real type directly be-
low, that is, vertically aligned with, Video and a general instance-of relationship
between them. Note, however, how the two-dimensional framework explicitly
distinguishes between physical classification (e.g., between Class and Video)
and model classification (e.g., between Video and the real tape). We chose not
to do the vertical alignment of the real tape with Video in order to emphasize
the role instance models can play and to illustrate the correspondence between
model elements and things in the real world. For instance, Video is not only a
model classifier for real tapes, it is also a representative of the real-world idea
of a video. It represents the mental concept that defines the intension of the
Video concept, that is, the description of what qualifies as a videotape and what
does not.

5.5 The Shape of the Infrastructure

The final question we wish to address is how the architecture of the UML
infrastructure should be conceptualized. As explained, a great step forward
in clarity and consistency is achieved if logical and physical classifications
are distinguished and regarded as separate dimensions. Both subfigures of
Figure 14 visualize the separate dimensions. Note that the core language con-
structs (at P1) can be regarded as being “meta” to all the logical metalevels.
Adopting the idea—which is also embodied in the nested hierarchy approach
of Section 3.3.1—that one level can see multiple levels at once, ignoring any
intralevel instantiation of the target level, is actually unavoidable with a shal-
low instantiation scheme. If P1 were a linear extension to the L-level hierarchy
then whatever is specified in, for example, Object, could only have an effect on
L2-level elements. Using shallow instantiation, the instance facet of an L2-level
instance (created from a P1-level element) could not further be used as the type
facet for L1-level elements (still assuming the situation with P1 on top of L2).
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Fig. 23. Aligning logical and physical classification.

In fact, this points out that the only sound interpretation of the original linear
metamodeling framework is one that assumes intralevel instantiation within
M1 (i.e., locates modeled instances at the M1 level as well). Otherwise, the effect
of M2-level elements, such as Object, on M0 level elements cannot be explained
within a strictly linear framework.

Interestingly, though, adding the unification of physical classifiers and deep
instantiation to the picture removes the need for the first proposal, the dis-
tinction between logical and physical classification. Since deep instantiation
enables information and properties to be carried over multiple logical levels,
it is no longer necessary to define everything relative to a level immediately
next to that level (i.e., maintain a two-dimensional framework). Deep instan-
tiation allows information pertaining to a level to be defined in any higher
level. As a result, the physical level P1 can actually be put on top of L2 with-
out losing any means of descriptive power (see Figure 23). The type facet of
ModelElement (and associated MOF interfaces) would be replicated at every
logical level (except L0) using the notion of dual fields [Atkinson and Kühne
2001b].

It is, hence, possible to view the core language definition (P1) as representing
the topmost level in the level hierarchy. As illustrated in Figure 23, this creates
a four-level architecture with a level at the top, which corresponds to the intent
of the original M3 meta-metamodel. Note, however, that interpreting this as
resembling the original four-level architecture (M3 to M0) has to be done with
caution. The architecture shown in Figure 23 realigns logical and physical clas-
sification to the same dimension. It should suit those who have interpreted M0
elements as being modeled instances (instead of real-world things), that is, who
assumed logical classification between M1 and M0 elements. The architecture
is unusual to those who assumed intralevel instantiation between classes and
objects at M1 and viewed physical classification as the only instance-of rela-
tionship, which gives rise to metalevels. In particular, real-world things would
need to be shown sideways to the hierarchy depicted in Figure 23.
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Whether it is better to use two dimensions for physical and logical classifica-
tion, respectively, or whether deep instantiation should be used to realign the
two forms of instantiation into one again, is currently an open question.

6. CONCLUSION

In this article we have traced the history of interpretations of the UML model-
ing framework, and have identified some fundamental problems in the way it
is currently organized. We then distilled recent research work into three basic
proposals for rearchitecting the modeling framework to meet the requirements
for a new UML infrastructure, in particular, addressing tailorability for mod-
elers in specialized domains. Finally, we discussed some further issues related
to the interpretation and design of the new architecture.

The first proposal was to base the architecture on an explicit separation of two
basic forms of classification (instance-of relationships): physical classification,
which classifies model elements according to their language classifiers, and
logical classification, which classifies model elements according to their logical
role in the modeled domain. This separation has a number of important benefits.
In particular, it

—clarifies the distinction between language-oriented metamodeling and
domain-oriented metamodeling, and thus opens the way for a sound and
optimal balance between the definition of the UML in terms of language
features and model library content;

—provides a natural approach for problem-oriented (domain) metamodeling
and allows an arbitrary number of logical metalevels as befits the modeling
problem in hand;

—provides a sound and natural interpretation of stereotypes and tagged values
in terms of logical metamodeling. The notation for stereotypes can be viewed
as a shorthand way of performing logical metamodeling; and

—restores the doctrine of strictness as a natural way of constructing metalevels
according to instance-of relationships in each of the metadimensions (logical
and physical).

Although some may argue that restoring the usefulness of strictness is
of questionable value, it has to be noted that the strictness discipline was
instrumental in uncovering and understanding the subtle problems of the
original presentation of the metamodeling framework. In the presented two-
dimensional framework, the strictness discipline is fully applicable and—like
any guideline—provides help in staying away from unclear scenarios.

The second proposal integrated the instance and type facets of model el-
ements to provide a single unified view of all elements within the modeling
framework. This has the following important benefits. It

—removes the artificial distinction between instances, types, metatypes, and
the like, and by providing a single unified concept enables unbounded log-
ical metalevels without implying changes to the superstructure whenever
another level is needed;
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—allows relationships between model elements representing instances and
types to be controlled by simple and explicit constraints; and

—opens up the possibility of an alternative organization of the infrastructure,
consistent with the explicit separation of logical and physical classification.

The third proposal was to enhance the semantics of (logical) instantiation to
recognize the unified view of model elements and support the transfer of infor-
mation across multiple instantiation steps. This deep instantiation mechanism
has the following benefits. It

—allows the natural modeling of real-world scenarios where information tran-
scends more than two model levels;

—allows commonly occurring constraints between the type and instance facets
of model elements to be expressed in a concise and natural way; and

—reinforces the possibility of an alternative organization of the infrastructures,
which realigns the logical with the physical classification dimension.

It is important to appreciate that although the proposals reinforce one an-
other, they are essentially independent and can be adopted independently. In
combination they enable the UML’s superstructure to be viewed as part of a
modeling library, fully empowering modelers to adapt it to their needs. How-
ever, just adopting the type/instance facet unification, perhaps combined with
deep instantiation, would also be of significant value to modelers, without im-
plying such a radical paradigm shift for tool builders.

Of the three proposals, the first is probably the most important, since it alone
enables the metamodeling concepts used in the UML infrastructure to be placed
on a sound footing, and the concept of strictness to be restored as a way of using
these concepts in a disciplined way. A nice feature of this proposal is that it
offers a clearer understanding of how the concepts in the existing architecture
can best be evolved, and how the variety of research-based proposals fits into
the picture.

The sharper distinction between the core UML language (physical) and the
predefined library (logical) opens up distinct strategies for defining the mean-
ing of UML features. The semantics of the core language is probably best de-
scribed by language-oriented approaches, whereas the semantics of library fea-
tures may best be described by alternative domain-specific approaches. Both
approaches are mutually compatible.

The approach of viewing diagrammatic (i.e., visual) representations of a
model as merely a special case of the multiple possible representations (e.g.,
XMI-based, database-based) opens up the possibility of a clearer role for the
MOF as a part of the infrastructure responsible for model representation and
reflection.

Finally, the enhanced understanding of the instance-of relationships within
the modeling framework, particularly the distinction between the logical and
physical dimensions, also offers a more natural understanding of how the model
elements relate to the real-world subjects of the model.

As we have clearly stated, some of the discussion points addressed in the last
section of this article have not yet been fully resolved. Nevertheless we believe
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that the three basic proposals we have presented lead the way to a sound footing
on which a tailorable UML, supporting a family of languages, can be placed.
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